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Natural selection plays a fundamental role in the
ecological theory of adaptive radiation. A pre-
diction of this theory is the convergent evolution
of traits in lineages experiencing similar
environments. The Hawaiian honeycreepers are
a spectacular example of adaptive radiation
and may demonstrate convergence, but uncer-
tainty about phylogenetic relationships within
the group has made it difficult to assess such
evolutionary patterns. We examine the phyloge-
netic relationships of the Hawaii creeper
(Oreomystis mana), a bird that in a suite of
morphological, ecological and behavioural
traits closely resembles the Kauai creeper
(Oreomystis bairdi ), but whose mitochondrial
DNA (mtDNA) and osteology suggest a relation-
ship with the amakihis (Hemignathus in part)
and akepas (Loxops). We analysed nuclear DNA
sequence data from 11 relevant honeycreeper
taxa and one outgroup to test whether the
character contradiction results from historical
hybridization and mtDNA introgression, or con-
vergent evolution. We found no evidence of past
hybridization, a phenomenon that remains
undocumented in Hawaiian honeycreepers, and
confirmed mtDNA and osteological evidence
that the Hawaii creeper is the most closely
related species to the amakihis and akepas.
Thus, the morphological, ecological and beha-
vioural similarities between the evolutionarily
distant Hawaii and Kauai creepers represent an
extreme example of convergent evolution and
demonstrate how natural selection can lead to
repeatable evolutionary outcomes.

Keywords: ecological convergence;
convergent evolution; Hawaiian honeycreepers;
mitochondrial DNA introgression; hybridization;
adaptive radiation
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1. INTRODUCTION
Adaptive radiation is a fascinating evolutionary pro-
cess that has generated much biodiversity. Although
several mechanisms may be responsible for such
diversification, the ‘ecological theory’ holds that it is
the outcome of divergent natural selection between
environments (Schluter 2000). Whether adaptive
radiations result chiefly from such ecological speciation,
however, remains unclear (Schluter 2001). Convergent
evolution is often considered powerful evidence for the
role of adaptive forces in the speciation process
(Futuyma 1998), and thus documenting cases where it
has occurred is important in understanding the link
between natural selection and adaptive radiation.

The more than 50 species of Hawaiian honeycree-
pers (subfamily Drepanidinae) are a spectacular
example of adaptive radiation and an interesting
system to test for convergence, which has been
suspected among the nuthatch-like ‘creeper’ eco-
morph on the islands (figure 1). The Hawaii creeper
(Oreomystis mana) has traditionally been allied with
the Kauai creeper (Oreomystis bairdi ), either as con-
specific (Amadon 1950) or as a congener (Henshaw
1902; Pratt 1992). The two birds share many
similarities including bill shape, foraging and mob-
bing behaviours, and juvenile plumage pattern (Pratt
1992; Foster et al. 2000; Lepson & Woodworth
2001). Their juvenile begging calls are nearly identical
and distinct from those known for other honeycree-
pers (Pratt 2001). Both species possess a narrow,
simple notch-tipped tongue very different from the
tubular tongues of most other honeycreepers (Pratt
1992), including akepas (Loxops) and amakihis (Hemi-
gnathus in part). But despite these apparent synapo-
morphies, recent osteological and mitochondrial
DNA (mtDNA) evidence (Fleischer et al. 2001;
James 2004) suggests these two species are evolution-
arily quite distant, and instead points to a close
relationship between O. mana and the cross-billed
akepas or curve-billed amakihis. Pratt (2001)
remarked that if the Kauai and Hawaii creepers
derived their diverse similarities by convergence, they
would present the most dramatic example of conver-
gent evolution yet discovered in birds.

As an alternative explanation for the conflicting
phylogenetic evidence, Pratt (2001) suggested a past
hybridization event. Under this scenario, hybrids
would have involved male Oreomystis mating with
female akepa or amakihi. If the Hawaii creeper
descended from such offspring, it could have retained
most of the phenotypic characteristics of Oreomystis
but possess mtDNA from the introgressing species.
Hybridization can result in a significantly different
genealogy for mtDNA from that of most genes in a
species, as mtDNA is more likely to introgress than
nuclear DNA (nucDNA; Ballard & Whitlock 2004).
Indeed, mtDNA from one taxon can completely replace
that in another, with little or no evidence of nuclear
introgression or morphological change (Bernatchez
et al. 1995). No unequivocal cases of hybridization have
yet been documented in Hawaiian honeycreepers. If
past introgression is responsible for the incongruence
between mitochondrial sequences and some striking
phenotypic characters, nucDNA markers should reveal
the contribution of the Oreomystis lineage to the genetic
signal of the Hawaii creeper.
This journal is q 2008 The Royal Society
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(a) (b)

Figure 1. Photographic comparison of the (a) Kauai creeper and (b) Hawaii creeper. Photographs by Jack Jeffrey.
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Here, we examine nucDNA sequences from several
honeycreeper species to test whether convergence or
introgression characterizes the relationship between
the Hawaii and Kauai creepers.
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2. MATERIAL AND METHODS
We analysed 19 individuals belonging to 11 relevant honeycreeper
taxa and one outgroup. See appendix S1, electronic supplementary
material, for provenance of samples. Five distinct gene regions,
including four nuclear introns and one exon (see electronic
supplementary material), generated ca 2500 BP of sequence data.
We analysed the intron and exon datasets both separately and
concatenated. We conducted a homogeneity partition test (ILD,
Farris et al. 1995) with heuristic search, as implemented in the
program PAUP� v. 4.0.b10 (Swofford 2002), to evaluate the
congruence of phylogenetic signal between the two sequence sets.
We reconstructed phylogenies using three approaches: maximum
parsimony (MP); maximum likelihood (ML); and Bayesian infer-
ence (see electronic supplementary material). To evaluate the
strength of the evidence for the placement of the Hawaii creeper
with akepa/amakihi versus Kauai creeper, we subsequently applied
constraints in the MP and ML methods to force the alternative
topology, and compared the resulting ML trees with the uncon-
strained trees using the S–H test (Shimodaira & Hasegawa 1999;
see electronic supplementary material). In addition to the nucDNA
data, we obtained and analysed 1254 bp of mtDNA sequences from
the same specimens (see electronic supplementary material for
methods and genes used). All sequences have been deposited in
GenBank (FJ266094–FJ266312).
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3. RESULTS
The partition-homogeneity test was non-significant
(pZ0.10), indicating congruence between the different
gene regions and justifying the concatenation of the
nucDNA sequences into a single data matrix, but we
also analysed the introns and exon separately. The
results of the separate analyses were concordant with
those from the concatenated analysis (see electronic
supplementary material), so we present only the results
from the combined dataset.

MP analysis of the combined dataset resulted in
120 equally parsimonious trees of length 113, and
ML analysis resulted in four equally likely trees with
a Kln likelihood score of 4195.1. All of the MP and
ML trees placed the Hawaii creeper in a clade with
the akepas and amakihis (figure 2). Bootstrap values
at this node for both MP and ML analyses were
moderately high (higher than 75%). Bayesian infer-
ence also produced a consensus topology similar to
the MP and ML results and showed strong support
RSBL 20080589—5/12/2008—16:41—CHANDRAN—318457—XML – pp.
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for placement of Hawaii creeper with the akepas and
amakihis, as noted by a high posterior probability
value of 1.0 for this clade (figure 2). Trees con-
structed using mtDNA sequences from the specimens
in this analysis (figure S3, in the electronic supple-
mentary material) were nearly identical to the trees
from the nuclear gene analyses (figure 2) and
generally matched previous trees based on more taxa,
especially with regards to the position of the Hawaii
creeper (Fleischer et al. 2001).

Constraining the topology such that the Hawaii
and Kauai creepers formed a monophyletic group
increased the length of the MP tree by eight steps and
lowered the score of the ML tree by 28.6. Likelihood
scores of the constrained trees were significantly
worse ( pZ0.007, S–H test) than that of figure 2.
4. DISCUSSION
By corroborating the phylogeny obtained from
mtDNA and osteology, the results from nucDNA
markers indicate that creepers in the Hawaiian Islands
are an astounding and strongly supported example of
ecological convergence. The two species apparently
evolved independently to fill similar niches on separ-
ate islands, and morphological and behavioural traits
converged as a result of similar selective pressures.
Although a detailed osteological analysis supports the
molecular result (James 2004), most other phenotypic
characters support the hypothesis of a close relation-
ship between the Hawaii and Kauai creepers (Pratt
2001). Characters such as song and plumage, which
may be subjected to natural or sexual selection,
exhibit high levels of evolutionary lability and homo-
plasy in birds (e.g. Price et al. 2007). Tongue
morphology may also be under selection for different
foraging strategies, with a simple forked tongue being
better adapted to picking up insects than the brush-
tipped tubular tongue of most other honeycreepers
(Richards & Bock 1973). It is, however, surprising
that a behavioural trait not clearly related to foraging,
such as juvenile begging calls, would be convergent.
Overall, the observed level of discord between
evolutionary relatedness and behavioural and
morphological traits is unprecedented among Hawaiian
honeycreepers, and surprising among birds generally.
1–5
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akepa, Loxops coccineus (SOL245)

akepa, Loxops coccineus (SOL769)

akepa, Loxops coccineus (SOL242)

akekee, Loxops caeruleirostris (RCF2681)

akekee, Loxops caeruleirostris (MVZ178405)

Hawaii creeper, Oreomystis mana (SOL1639)

Hawaii creeper, Oreomystis mana (SOL1251)

Hawaii creeper, Oreomystis mana (SOL1068)

Hawaii amakihi, Hemignathus virens (BRY003)

Kauai amakihi, Hemignathus kauaiensis (168010331)

Iiwi, Vestiaria coccinea (PUU023)

apapane, Himatione sanguinea (CJR057)

Palila, Loxioides bailleui (178429)

Laysan finch, Telespiza cantans (738)

Kauai creeper, Oreomystis bairdi (178406)

Kauai creeper, Oreomystis bairdi (PFC203)

Maui alauahio, Paroreomyza montana (H119)

Maui alauahio, Paroreomyza montana (H116)

House finch, Carpodacus mexicanus (93011782)

0.008

support values
(node) MP/ML/BA

(A) 80/64/98

(B) 64/63/61

(C) 100/100/100

(D) 85/88/100

(E) 81/80/100

(F) 66/62/92

(G) 88/86/100

(H) 85/76/100

(I) -/53/76

(J) -/-/53

(K) 97/97/100

(L) 51/-/82

(M) 50/52/84

(M)

(L)
(J)

(K)(I)

(H)

(D)

(G)

(E)

(F)

(C)

(B)

(A)

Figure 2. Bayesian consensus topology obtained from the analysis of sequences from five introns and one exon, partitioned
into two parts. Bootstrap values from MP and ML analyses (1000 replicates each), and posterior probability values (!100)
from Bayesian analysis (15 000 trees sampled) are provided for each node. A dash indicates less than 50% support.
Collapsed nodes had low bootstrap and posterior probability values (i.e. less than 50%). The Hawaii creeper/akepa/amakihi
clade (node H) is shown in bold. The scale at the bottom indicates 0.8% divergence along a branch.
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Based on our and previous results, we recommend

the removal of the Hawaii creeper from the genus

Oreomystis. The statistical polytomy among the

Hawaii creeper, amakihis and akepas (figure 2),

however, makes the relationships among those three

groups unclear. Further research will be needed

before we can say whether the Hawaii creeper

deserves a monotypic genus (which would require a

new name) or can be classified within an existing one.

But because of the rapidity of the radiation and the

large number of extinctions (Fleischer et al. 1998;

James 2004), phylogenetic study of the Hawaiian

honeycreepers remains challenging.

The convergence of creepers contrasts with the

pattern of the few other honeycreeper ecomorphs that

have been examined, which apparently evolved only

once and dispersed among the islands (Fleischer et al.
2001). These analyses, however, included only extant

taxa. In addition, in the absence of convincing

evidence of hybridization among them, Hawaiian

honeycreepers contrast sharply with the other iconic

avian island radiation, Darwin’s finches, in which

hybridization and introgression are known to play a

major evolutionary role (Grant & Grant 2008). None-

theless, the discovery of this previously unknown

example of convergence in Hawaiian honeycreepers

adds to the growing list of adaptive radiations

demonstrating repeated evolution of similar eco-

morphs in comparable environments (e.g. Anolis
RSBL 20080589—5/12/2008—16:41—CHANDRAN—318457—XML – pp. 1–5
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lizards: Losos et al. 1998; cichlid fishes: Rüber et al.
1999; Hawaiian Tetragnatha spiders: Gillespie 2004).
Such deterministic patterns of evolution underscore
the important role of natural selection in shaping
adaptive radiations, and call into question the view
that evolution is inherently contingent and unpredict-
able (Gould 1989).
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